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PREFACE

The work reported herein was conducted by the Arnold Engineering Development
Center (AEDC), Air Force Sysiems Command (AFSC) for the NASA Langley Research
Center, the NASA Ames Research Center, and the Air Force Flight Dynamics
Laboratory/FGC. Project monitors were Mr. William Gilbert for the Langley Rescarch
Cenler, Mr. Gerald Malcolm tor the Ames Research Center, and 1st Lt Rob Crombie for the
Air Force Flight Dynamics Laboratory. The results of this research were obtained by ARO,
[ne., AEDC Division (a Sverdrup Corporation Company), operating contractor for the
AEDC, AFSC, Arnold Air Force Station, Tennessce, under ARO Project No. P34A-T3A.
Analysis of the data was completed on September 30, 1978, and the manuscript was
submitted for publication on January 2, 1978.
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1.0 INTRODUCTION

The simulation of aircraft motion through analytical techniques has become an
important tool in the development, testing, and operational phases of fighter aircraft. Pilot-
in-the-loop simulators, which in the past have been used primarily for pilot proficiency and
training, are presently being applied to the development and testing phases of new fighter
aircraft. Aircraft subsystems, such as automatic departure prevention systems, statl
inhibitors, spin-prevention concepts, etc. (Refs. 1 through 4), are continually being
evaluated in motion simulators such as the NASA Langley Differential Maneuvering
Simulator (Ref. §).

In general, correlation of flight and simulated aircraft motion is good in the low angle-
of-attack unstalled flight regime. As the angle of attack increases to the extremes of the
aircraft operating envelope, the level of correlation diminishes correspondingly. This is
unfortunate since most of the aircraft handling problems of greatest interest for simulator
evaluation occur at high angles of attack. This degradation in correlation, resulting from
poor “‘before-the-fact’’ simulation, is not due to an inadequacy in the aircraft equations of
motion at high angle of attack but results from improper or inadequate modeling of the
aircraft aerodynamics in this regime. The poor definition of the aircrafi dynamic
characteristics at high angles of attack is believed to be a major factor in this deficiency.

The classical method of modeling the aircraft dynamic characteristics in motion
simulation uses the direct damping derivatives (Cmq, Caps Cgp, etc.) and cross derivatives
(C,,p, Ci). This method has proved to be accurate in low-angle-of-attack flight where
ajrcraft acrodynamics are linear and cross-coupling and acceleration derivatives are small.
As angle of attack increases and associated nonlinear flow resulting from separation and
asymmetric vortex shedding occurs, the secondary cross-coupling (C.,q. Cpq-. Crnps Cm,,) and
acceleration (Crgr Cg) derivatives may become large. Orlik-Ruckemann, Hanff, and
Laberge at NAE (Ref. 6) have shown experimentally, with a nonairplane model (cone wing),
that the magnitude of the cross-coupling rate derivatives in combination with acceleration
derivatives at high angles of attack approach and/or exceed those of the direct damping
derivatives. Likewise NASA Langley through the use of a curved flow tunnel (Ref. 7) has
shown the 8 acceleration derivatives for an airplane model to be the predominant terms at
high angles of attack in the classical C, + C.,"3 and C, + Cré combinations measured in
forced-oscillation experiments.

Assuming that aircraft do exhibit both cross-coupling and acceleration derivatives of the
magnitude of those in Refs. 6 and 7, the question arises as to the importance of these
derivatives in aircraft flight mechanics.
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The Arnold Engineering Development Cenler is presently conducting research 1o define
what aerodynamic parameters are necessary for achieving good ‘‘before-the-fact’' aircraft
motion simulation in high-angle-of-attack flight. Definition of these parameters is
important for the design of future experimental test apparatus in which measurements of
these parameters will be made.

The subject analysis defines the importance of cross-coupling and acceleration damping
derivatives in the high-angle-ofl-attack operation of aircraft. Derivatives investigated in the
analysis are Cmp- Crnps (:g ol Cn , and C"B Twao types of aircraft are used in Lhe analysis,
a fighter/bomber and a[lack alrcrat‘l Changes in the response to control perturbations for
each of the aircraft are investigated with both individual and nonlinear simultaneous
variations of cross-coupling and acceleration derivatives. Time histories of the aircraft
motion are generated using a six-degree-of-freedom, nonlinear, computer program. The
analysis addresses only the maneuvering angle-of-attack flight regime (o < 25 deg).

2.0 BACKGROUND

Before the 196(’s, aircraft dynamic cross-coupling and acceleration derivatives were
generally considered insignificant in fighter aircraft motion simulation and dynamic stability
analysis. These assumptions were good primarily because aircraft of this era were operating
at moderate angles of attack where both cross-coupling and acceleration derivatives
possessed small values. 1n the mid-1960’s, it became necessary for the operating envelopes of
these same aircraft to be extended to high angles of attack under combat conditions.
Analytical simulation of this partly stalled, high-angle-of-attack maneuvering flight was
generally unsuccessful. Any successful correlation was generally an ‘‘after-the-fact™
correlation resulting from many parameter variations to achieve a suitable combination of
aerodynamics. It became apparent that better representation of the aerodynamics of an
aircraft would be needed to achieve a good before-the-fact analytical simulation of aircraft
in high-angle-of-attack maneuvering flight.

An investigation conducted at AEDC in 1976 (Ref. 8) provided some insight into the
importance of dynamic cross and cross-coupling derivatives in motion simulation studies of
fighter aircraft in the maneuvering flight regime. The aircraft motion sensitivity to the
various derivatives in level and turning flight was evaluated by a five-degree-of-freedom,
linearized stability program. The results of the study were incomplete because the cross-
coupling derivatives were varied with all other derivatives kept at zero; therefore, any effects
that might have occurred from the interaction of the derivatives were not considered.
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An additional study (Ref. 9) was conducted in 1978 at AEDC to determine the sensitivity
of the spinning motion of fighter aircraft 10 dynamic cross-coupling and acceleration
derivatives. Results indicate that the dynamic derivatives can produce significant effects on
the aircraft spinning motion and should be considered when conducting a spin analysis. The
results also indicate that the spinning motion sensitivity to the dynamic cross-coupling and
acceleration derivatives investigated is configuration dependent.

An aircraft sensitivity study evaluating cross-coupling derivatives has been conducted by
Curry and Orlik-Ruckemann (Ref. 10). This study addresses both level and turning flight
conditions for a fighter/bomber configuration at high angles of attack. Since only one
aircraft was used in the study, the configuration dependence of the derivatives was not
addressed. Also, the basic aerodynamic data matrix used in the motion simulation did not
include nonlinear effects of some static and dynamic derivatives that are predominant at
high angles of attack.

From a review of the above investigations, it was concluded that all of the aerodynamic
characteristics of the aircraft configurations should be incorporated in the mathematical
model for an accurate evaluation of the effects of cross-coupling derivatives in motion
simulation. Also, the cross-coupling derivatives should be included (at some nominal values)
in the sensitivity study when each derivative is varied individually.

3.0 METHOD OF ANALYSIS

A six-degree-of-freedom, nonlinear, motion program was used in the analysis. The
program was formulated by North American Rockwell (Ref. 11) using a fourth-order
Runge-Kutta integration algorithm with a fixed integration step size. The program input and
aerodynamic modules have since been modified for adaptation to the cross-coupling and
acceleration dynamic derivatives. The equations describing the aircraft motion are rigid-
body equations referenced to a body-fixed axis system (Fig. 1) at the aircraft center of
gravity {cg). The basic equations are as follows:

Forces:
ﬁ=rv—qw—gsinﬁ+ﬁ+i‘ (D
m m
V=1pw —rm + gcos@ singg + ¥ (2)
m
. F T
W=oqu-pv+gecosfcosgp + L+ 2 (3)

m m
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Moments:
I, — y g

p =2 [Z qr IX_J {r + Py + IEI_K )]
Iy Iy Iy

. - 1.8 .

q = lz ~'x pr + xz (r? - p% + My + Myr _ £ r (5)
IY lY IY l\, lY

. I, -1 . i Q

P Ypg- %2 G - - Mz, BB 4 (6)
¥4 lZ 7 v

The external forces and moments (Fx, Fy, Fz, Mx, My, and Mjy) in the equations are
comprised of aerodynamic coefficients representative of the aircraft, The external force and
maoment contributions attributable to engine thrust (including gyroscopic effect) are
represented by Ty, Tz, My, lgller, and Igflgq. Development of the aerodynamic
mathematical model in representing each aircraft is presented in Appendix A.

Auxiliary equations used in this analysis are given as follows:

= tan—1 (%) B = sin—! (lV) M

o =
é - u;;-—wz;l, ﬁ' _ ‘ _ \-_2 (uu Fvv o+ oww (8)
nt 4+ w v u? 4 w2
h
Vo=tu? - v 4wl y = tan" ! | ——— 9
xt o+ v
g=q cos ¢ — r sin B l-;b= p + tan B (reos @ -~ q sin @) (10)

¢=rc05¢+qsinqb, ﬂ:‘\fp2+q2+r2 (11)

cos @

The six-degree-of-freedom program was modified to compute the initial trim required
for level (1-g) and steady turning (3-g) flight conditions. For the trimmed level flight
condition, either a rudder or elevator doublet was executed to excite the appropriate

10
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derivative because of the near-zero p, , and r body axis rates associated with 1-g trimmed
flight. The turning flight condition provided larger values of the g and r rates, thereby giving
the cross-coupling moments larger values because of the control doublet action. In a
coordinated turn, the body axis roll rate, p, is zero; therefore, the derivatives associated with
p were deleted from the trim equations.

Initially, all derivatives under investigation were given nominal values; next, individual
variations in each derivative were performed with the other derivatives fixed at their nominal
values. By maintaining nominal (nonzero) values for all derivatives, the possible derivative
interaction effects described in Ref. 12 were included. Angular motion changes about the
aircraft cg and changes in the cg path with variations of the derivatives were used in the
analysis for ascertaining the significance of each derivative.

4.0 TECHNICAL DATA

4.1 AIRCRAFT CONFIGURATIONS

Twao aircraft configurations were selected for this dynamic sensitivity study. Each was
selected on the basis of inherent, high-angle-of-attack, lateral/directional flight
characteristics. The intent was to select aircraft that would exhibit a range of
lateral/directional stability characteristics typical of current high-performance military
aircraft. On the basis of these criteria, a typical fighter/bomber and an attack configuration
were selected for the analysis.

The fighter/bomber configuration shown in Fig. 2 represents a twin-engine, swept-low-
wing-type aircraft. Past performance has shown that this aircraft possesses a **wing rock™
or dutch roll oscillation at high angles of attack, followed by a directional divergence as
angle of attack exceeds approximately 23 deg. This configuration was considered an extreme
case of modern fighter aircraft that experiences *‘wing rock’ in difficult tracking
maneunvers.

The attack configuration shown in Fig. 3 represents a single-engine, swept-high-wing-
type aircraft. This configuration exhibits some directional instability at angles of attack
above 20 deg while still possessing lateral stability. The aircraft departure is characterized by
an abrupt “‘nose slice.”” The attack aircraft possesses aerodynamics corresponding to a
shoulder-wing configuration in contrast to the fighter/bomber low-wing configuration.

4.2 BASIC AERODYNAMIC AND INERTIA DATA

The aerodynamic data matrices used in modeling both aircraft configurations were
obtained from low-speed wind tunnel tests. The data for the attack aircraft were obtained

11
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from the Navy. The fighter/bomber data matrices were formulated from data presented in
Refs. 13 and 14, The basic matrices are a combination of static and dynamic oscillatory
aerodynamic data in the body axis system shown in Fig. 1. Data are input to the matrices in
table look-up form as functions of the variables shown in the equations of Appendix A,

Mass, inertia, and geometric characteristics of the aircraft configurations are presented
in Table 1. Although the magnitudes of the mass and inertia of the two aircraft are
considerably different, the mass distributions along the reference axes of the aircraft are
similar. Figure 4 presents the mass distributions of several modern fighter aircraft. All of
these aircraft with the exception of the F-5 have similar mass distributions along their
reference axes.

5.0 RESULTS AND DISCUSSION

5.1 GENERAL

The aircraft motion sensitivity study was conducted in level and 3-g turning flight at an
altitude of 30,000 ft (9,144 m). Two types of aircraft were used in the analysis, a
fighter/bomber and attack aircraft. The primary analysis centers around the fighter/bomber
with the attack aircraft being used to ascertain and confirm configuration dependence.
Turning flight conditions simulated the aircraft in the maneuvering flight regime. The trim
angle of attack of 20 deg was selected for most flight conditions. The aircraft airspeed was
adjusted to achieve the desired load factor at the trimmed angle of attack. It was assumed
that the low-speed aerodynamics for both aircrafi were valid for the speed ranges
encountered. A summary of the initial flight conditions for simulating the aircraft/flight
combinations is given in Table 2. It should be noted that the attack aircraft was used only in
turning flight simulations. Also shown in Table 2 are trim conditions for an angle of attack
of 15 deg; these were used for selected runs discussed in Section 5.3 on nonlinear effects.

The 20-deg trim angle of attack provided a flight condition where the cross-coupling
(CC) and 8 acceleration derivative variations would have their maximum effectiveness and
yet provide a small, positive, static stability margin. Prolonged operation above this angle of
attack may result in inadvertent loss of controllability. This is indicated by the
characteristics shown in Fig. 5. Above 20 deg, the static lateral/directional stability
p'arametcrs, (_:ns and C_rﬂ, become unstable, resulting in C,,B dynamic (C,l‘g cosa — lzz/lxx Cgﬂ
sin &) becoming negative near 20 deg.

The range over which the dynamic derivatives were varied is presented in Table 3 and
corresponds to the approximate maximum and minimum experimental values obtained from

12
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recent wind tunnel tests (Refs. 6 and 7). The derivatives qu + Gy Gy + Chr and Cpy —
C“‘B (Fig. 6) were obtained from the program outlined in Ref. 6 using the cone-wing model
shown in Fig. 7. It should be noted that the derivatives of Fig. 6 were treated as pure rate
terms in the aerodynamic equations of Appendix A. Little is known concerning the
magnitude of the CC derivative Cmp. The experimental work performed by Orlik-
Ruckemann (Ref. 6) addresses only the CC derivatives associated with pitching and yawing
of the model and does not include derivatives resulling from a rolling motion. Since Ref. 6
represents the only known published literature of measured aircraft CC derivatives, the
relative magnitude of Cmp continues to remain in question; therefore, maximum and
miminum Cmp values identical to those selected for Cy, , -1 to | per radian, were used.
The 8 acceleration derivatives Cfé and Cr;ﬁ were ob1aineq {Ref. 7) with a fighter/bomber
configuration similar to that used in this investigation. The § derivative variation with angle
of attack can be determined from Fig. 8, which presents a comparison of total C,,, + C,,; cos
a, C, — Cy; cos o obtained from a NASA Langley forced-oscillation test and C,, C;
obtained from the Virginia Polytechnic Institute curved-flow tunnel test on a similar model.

The nominal values of the dynamic CC and B derivatives used in the sensitivity study are
presented in Table 4. The nominal values represent extremes of the data obtained in the wind
tunnel tests in Refs. 6 and 7. The use of these large values ensures that interactions between
derivatives, as described in Section 5.2, are accounted for in the analysis. It should be
emphasized that in this analysis the magnitudes of the CC derivatives used are
representative of a cone-wing body and not an aircraft configuration. To gain some insight
into this potential problem, a comparison of the basic aetodynamic characteristics of the
cone-wing model with those for the two aircraft configurations is shown in Figs. 5, 9, and
10. Note that all derivatives are nondimensionalized using standard characteristic references,
span. chord, and area. As shown in Fig. 5, the static lateral/directional characteristics of the
cone-wing are comparable in magnitude to the aircraft configurations, with a loss in stability
occurring near 25-deg angle of attack instead of the 15- Lo 20-deg angle-of-attack range for
the fighter/bomber and attack configurations. The cross derivative, Cy, for the cone-wing
shown in Fig. 9 is quite representative of the attack aircraft. The direct damping derivatives,
C,, and C,,,q, for the cone-wing are not as well behaved as the static and cross derivatives,
and the trends with angle of atiack are not considered representative of the aircrafi
configurations.

It is interesting to note that in the angle-of-attack range (30 to 40 deg) where Cmq for the
cone-wing model acquires large values, the CC derivatives C,1Iq and qu (Fig. 6) also have
their extreme values. Indications are thal some separated flow mechanism with rotational
rate q may be pertubating the derivatives for the cone-wing model. The Cmq derivative of the

13
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two aircraft configurations (Fig. 10) is well behaved over the angle-of-attack range
presented; how large the qu and C,-q derivatives arc for these configurations is unknown. It
should be recognized that using cone-wing data as representative of the Cpq and C, a aircraft
derivatives is questionable.

5.2 CROSS-COUPLING AND ACCELERATION DERIVATIVE VARIATIONS
5.2.1 Baseline Motion

The approach used for conducting the dynamic sensitivity study was first 1o establish a
baseline motion with which other motions could be compared as derivative variations were
made. The baselinc maneuvers generated represent unique combinations of aircrafl
configuration, flight condition, and a nominal set of CC and 3 acceleration derivatives. For
each basecline maneuver generated, an elevator or rudder doublet was executed at 2 sec into
the maneuver to disturb appropriate p, q, and r rotational rates for investigating specific
lateral/directional or longitudinal derivatives. Specific baseline maneuvers generated for the
fighter/bomber aircraft include: (1) level and 3-g turning flight condition, Figs. 11 and 12,
respectively, with nominal values for the CC and § derivatives and (2) 3-g turning flight
(Fig. 13) with nominal values for the CC derivatives, § derivatives zero. The baseline
maneuver for the attack aircralt was generated for the 3-g turning flight condition (Fig. 14)
with nominal values for the CC derivalives, § derivatives zero. Included with each baseline
maneuver is an additional maneuver generaled for zero aerodynamic CC and acceleration
derivatives. This second maneuver is presented as a relerence and will be discussed later. It
should be noted that in level flight (Fig. 11) the disturbances in p, g, and r rates caused by
either elevator or rudder doublets are of a lesser magnitude than corresponding disturbances
in the 3-g wrning flight (Figs. 12, 13, and 14). As discussed in Section 5.1, airspeed
adjustments rather than aerodynamic changes were made to achieve the 3-g load factor for
turning flight. This increased airspeed in turning flight (see Table 2) resulted in larger
dvnamic pressures and therefore greater forces from the control surface deflections. The
result was larger p, q, and r rates from control surfacc doublets in turning flight.

Including large nominal values (Table 4) of the CC and # derivatives in the baseline
maneuver was an atiempt to account for the possible interaction effects on the derivatives,
The possibility of such an interaction is outlined in Refl. 12 using linearized equations of
motion and is included in Appendix B.

For each flight condition/aircraft/derivalive variation, a new set of initial trim
conditions had to be computed. The variations in the initial Mach number, attitude angles,
and angular rates with derivative variations sometimes required large control surface
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changes because of the ineffectiveness of the surfaces at the high angles of attack. This
extensive effort, which was not anticipated, was further complicated because obtaining the
multivariable aerodynamic data in the trim program required the use of an iterative solution
technique 1o get a unique set of trim values. Also, the low lateral/directional stability margin
for the fighter/bomber imposed strict restraints on the allowable mistrim in the
lateral/directional axis.

For each simulation, time histories are presented for the following variables: o, 8, 8 , 8,
&, ¥, D 4, I, 6 &, and 6y. Comparison of baseline and reference time histories
demonstrates the acrodynamic coupling effect for nominal values of CC and 4 derivatives.
As shown in Fig. 11 no perturbations in p and r rates occurred from the q motion in the level
flight reference case (no CC, f = 0). This was attributable 1o the lack of aerodynamic
coupling terms in the reference case and the minimization of inertia coupling by the near-
zero p, q, and r rates associated with trimmed level flight. When the CC and 8 derivatives
are included (baseline maneuver), the motion no longer remains planar. Both roll and yaw
motion of the aircraft are excited by the g rate in combination with the derivatives. For the
3-g turning flight shown in Figs. 12 through 14, a small amount of inertia coupling occurred
in the reference maneuver after an elevaior doublet. This inertia coupling was overshadowed
in the baseline case by the large aerodynamic coupling that ocurred when the nominal CC
and 8 derivatives were included.

5.2.2 C,-‘l Derlvalive Evaluation

The motion sensitivity to the rolling moment caused by the pitch rate derivative, C.-q, is
presented in Figs. 15 and 16 for the fighter/bomber in level and 3-g turning flight, respec-
tively. The range aver which this derivative was varied was 2.0 {nominal), 0.0, and -2.0 per
radian. As expected, the predominant effect was in the p and 8 motion; the 8 motions occur
as the aircraft rolls about its body axis at high angles of attack. Also expected was the near
mirror image in the p and 8 motion plots for derivative values of 2 and -2 per radian. The
divergence from symmetry with increasing time can be atrributed to the asymmetry of the
static data matrix as a function of 8 used in the six-degree-of-freedom motion program.

Figures 17 and L8 present the effect of er variations on the motion of the
fighter/bomber and attack aircraft, respectively. In each case, only the CC derivatives at
nonimal values were included in the baseline motion. The § derivatives were excluded
because of their large damping effect on the aircraft motion, as shown in the baseline
comparisons in Figs 12 and 13. There was concern that the heavy damping could
overshadow the effectiveness of the CC derivatives. Again, the motion resulting from
derivative values of 2 and -2 were near mirror images in p and 8 motion for both aircraft
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configurations, The positive value of C.-q produces a divergence in the roll motion of the
fighter/bomber but nol for attack aircraft. This low roll damping for the fighter/bomber
motion is explained by reviewing relative dynamic stability levels of each aircraft shown in
Fig. 10. The primary roll damping parameter, C,ap, is significantly lower for the
fighter/bomber in the angle-of-attack range from 15 to 20 deg.

Assuming the C,-q derivative to be of the magnitude approaching those used in Figs. 15
through 18, the resulting perturbations in longitudinal and lateral/directional planes for
both aircraft configurations are considered to be significant in aircraft motion simulation.
For the flight conditions and aircraft configurations used in this sensitivity study, the
characteristic effect of ng is not considered configuration dependent.

5.2.3 qu Derivative Evaluation

The effect of qu variation on the motion for the fighter/bomber is shown in Figs. 19
and 20 for level and 3-g turning flight, respectively. As expected for opposite signs of qu,
the near mirror image was produced in the yaw rate motion. This effect was not noted in
sideslip, 8 as was the case for C,, because § motion is generated primarily by the aircraft
rolling about its axis. Since the roll rate, p, showed negligible effect with C, a variation, the 8
variations were likewise small. The amplitudes of the initial r motion observed for the C,
variation in level flight were aboult a fourth of the p motion observed for C,eq. The reduced
yaw motion can be traced back to more damping in yaw than in roll as shown in the C,_ and
Cfn parameters in Fig. 10 at a 20-deg angle of attack.

Figures 21 and 22 present the effect of C,,,,:l variations on the motion of the
fighter/bomber and attack aircraft, respectively, with zero 8 derivatives. With the loss in
damping associated with keeping the Cnﬁ-. and C;; derivatives at zero, the fighter/bomber air-
craft becomes unstable in yaw rate for all values of C,.q. As a result of this instability, any
change in the qu derivative produces large changes in the yawing motion of the aircraft.
These are the same trends as previously shown in the p rate in Fig. 17 for the C['q derivative
variation with Cnﬂ- and Cgﬁ held at zero. The aircraft has such a low margin of stability that
any change in C"q results in an unstable roll motion (p). Because the attack aircrafi has more
stability at the conditions examined, the motion resulting from the Cq,, variation in Fig. 22is
quickly damped. Similar roll damping was observed in Fig. 18 for the attack aircraft with ng
variations.

The motion of both the fighter/bomber and attack aircraft is sensitive to the CC

derivative qu. The level of sensitivity, as discussed abgve, is dependent upon the stability of
the aircraft at the time 1he derivative variations are performed.
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5.2.4 C,,, Derivative Evaluation

The motion sensitivity to the pitching moment attributable to yaw rate derivative, Cp,,, is
presented in Figs. 23 through 26. An elevator doublet was used to excite the pitch rate, q, but
a rudder doublet was used to excite the yaw rate, r. The C, derivative was assigned values of
1.0 (nominal), 0.0, and -1.0. The sensitivity of the fighter/bomber in level and 3-g turning
flight to Cy,, variations is presented in Figs. 23 and 24. For each variation in Cp, , nominal
values for the other CC and 8 derivatives were included. As documented by Curry in Ref. 10
and in the linearized analysis of Ref. 12, the Cp,_derivative variation has a negligible effect
on the coupling of the longitudinal and directional aircraft motions.

Figures 25 and 26 present the effect of G, variations on the baseline motion of the
fighter/bomber and attack aircraft, respectively, with the zero § derivatives. For the
fighter/ bomber configuration, the characteristics of the motion were not significantly
effected by Cy, variation, but the aerodynamic coupling did result in a slight phase shift in
the longitudinal and lateral motion q and r, respectively. The effect of Cy, variation on the
motion for the attack aircraft (Fig. 16) appeared to be insignificant, even with the expanded
scales on roll rate p. Overall, the C,, derivative appears to be of little concern in motion
simulation if its magnitude remains within the limits investigated.

5.2.5 Cmp Derivative Evaluation

The motion sensitivity to the pitching moment attributable to roll rate derivative, Cmp. is
presented in Figs. 27 through 30. The values over which C,,.,]:| was varied were 1.0, 0.0
(nominal), and -1.0 per radian. Figures 27 and 28 present the effect of Cm,, variation on the
level and 3-g turning flight conditions for the figher/bomber aircraft. For these figures, all
CC and 8 derivatives with the exception of Cmp were included at their nominal values. Only
small effects were noted when the Cmp derivative was included in the fighter/bomber motion
in Figs. 27 and 2B. Of these effects, angle of attack displayed the largest variation from
baseline motion but remained within + 1 deg of the motion at all times.

Figures 29 and 30 present the effect of Cr,, variation in 3-g turning flight for the
fighter/bomber and attack aircraft, respectively. For the fighter/bomber aircraft, the
influence when the 8 derivatives were excluded is quite significant when evaluating the Cmp
coupling. Depending on the sign of Cmp, the resulting motion in the longitudinal and lateral
planes may be cyclic or divergent. As noted in previous derivative evaluations using the
fighter/bomber aircrafi, the loss in stability associated with keeping the 8 derivatives zero
results in an increase in sensitivity of the aircraft to CC derivative variations. Shown in Fig.
30 s the negligible effect of C'"p variation of * 1 on the attack aircraft motion with all other
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CC derivatives at the nominal values. The relative effects of excluding the § derivatives on
the fighter/bomber and attack aircraft motion indicate that several levels ol configuration
dependency may exist for a particular derivative when conducting a semsitivity study.
Aircraft stability must be investigated to achieve a true evaluation of derivative importance.

5.2.6 C,-B Derivative Evaluation

The motion sensitivity to the Cg; derivative is presented in Figs. 31 and 32. The derivative
was varied over the range of 0.2 to -1.0 per radian for the fighter/bomber aircraft in level
and 3-g turning flight conditions. Positive values greater than 0.2 resulted in a rapid oscil-
latory divergence in the roll motion for both level and 3-g turning flight. As shown in Figs.
31 and 32 for Cy& = 0.2, the characteristic rolling motion was c¢yclic for the level flight
condition, whereas the motion was oscillatory and divergent for 3-g turning flight. The
increased dynamic pressure associated with turning flight results in a more effective rudder
doublet with correspondingly larger pertubations. For this reason, motion resulting from
Cfﬂ- variations in turning flight is more pronounced. The nominal value of Cfé {-1.0) had a
strong damping effect on the lateral/directional motion when compared to motion for Cyg
= 0.0 and 0.2. The magnitude of the effectiveness of Cy; in damping indicates that gross
error may be occurring in motion simulation when the rate and acceleration derivatives are
not separated for nonzero values of Cy;.

5.2.7 C..ﬁ Derivative Evaluation

The motion sensitivity to the Cnﬁ- derivative is presented in Figs. 33 and 34 for level and
3-g turning flight, respectively. The sensitivity of the fighter/bomber lateral/directional
motion to variations of C,; was not as significant as that in the Cff; variation shown in Figs.
31 and 32, but was still of a magnitude that may be considered necessary for correct motion
simulation. As previously noted for the CC derivatives, the importance of the B derivatives
in motion simulation may be strongly dependent on the stability level of the aircraft. As
noted in Fig. 5, the lateral/directional stability level of the fighter/bomber aircraft at a
20-deg angle of attack is low.

5.3 NONLINEAR EFFECTS OF CROSS-COUFPLING DERIVATIVES

In a stability analysis where derivatives are varied individually and held at constant
values, the question of realistic simulation always exists. For the analysis discussed in this
section, the CC derivatives C,~q, C, @ and Cp, were varied in a nonlinear fashion as a function
of angle of attack for two aircraft tracking maneuvers. The maneuvers were generated to
simulate realistic excursions in the aircraft motion that might occur in a combat situation,
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i.e., rapid excursions in the longitudinal and lateral/directional planes of motion. Both
maneuvers were initiated from a 3-g turning flight condition. The first maneuver (Fig. 35)
generated a rapid increase in pitch rate, q, by using elevator control. The second maneuver
{Fig. 36) was a rapid bank-to-bank motion using aileron control. The initial trim angle of
attack was changed to 15 deg. The angle was reduced to 15 deg because at a 20-deg trim any
significant control movement resulted in aircraft motion into and beyond the stalled flight
regime. The CC derivatives er, qu, and C,,, were implemented as a function of angle of
attack as shown in Fig. 6. The new trim conditions for the baseline maneuvers are included
in Table 2. For each maneuver, the motion resulting from the inclusion of the nonlinear CC
derivatives is compared to the baseline maneuver with no CC derivatives.

Figure 35 presents the effect of the CC derivatives on the baseline motion when disturbed
by an elevator step for the fighter/bomber and attack aircraft. The inclusion of the CC
derivatives in the baseline motion for the fighter/bomber degraded the lateral/directional
damping and resulted in changing the final trim attitudes of ¢, ¥, and #. For the attack
aircraft, the CC derivatives resulted in driving the aircraft out of the stabilized turn.

Figure 36 presents the effect of the CC derivatives on the baseline motion when disturbed
by aileron control movement. The only noticeable effect on the baseline motion for both the
fighter/bomber and attack aircraft was in the final pitch and roll attitudes, # and ¢. It is
significant to note that the lateral/directional damping was not noticeably affected for the
excursions in angle of attack and the angular rates encountered. A closer look at the CC
derivatives (Fig. 6) and corresponding angular rates as a function of angle of attack revealed
that when the derivative magnitudes were of a significant value the corresponding rate was
small and vice versa. The effect of the CC derivatives was not noticeable in the transient
phase of the maneuver so far as damping was concerned, but resulted in an untrimmed
condition because of changes in o, p, q, and r.

The effect of the CC derivatives ng, C,,q, and Cp,, when combined in a nonlinear fashion
is dependent upon {light condition, nature of derivatives, and maneuver.

6.0 CONCLUDING REMARKS

The importance of including aerodynamic cross-coupling terms in the equations of
motion of fighter aircraft flying at high angles of attack was examined in a six-degree-of-
freedom sensitivity study for level and 3-g turning flight. If the cross-coupling derivatives
approach the magnritudes of those used in this study, the following observations and
conclusions for the conditions and aircraft configurations investigated are offered:
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1. The cross-coupling derivatives ng and C,.q are considered important in aircraft
motion.

2. The derivatives of pitching moment attributable to rolling and yawing, Cmp and
Cm,» are of less importance than er and Cog- The Cy derivative produces
some coupling effect in the longitudinal and laleral/directional motion for the
fighter/bomber, whereas the Cy,_ derivative appears to be insignificant in
aircraft motion.

3. The acceleration derivative C.-é has a strong effect on the damping
characteristics of the fighter/bomber lateral/directional motion,
whereas Cnﬂ- does nol have as strong an effect on the Iateral/directic_mal motion.
For motion simulation in the high-angle-of-attack flight regime, 8 derivatives
should be separated from their rate counterparts, C; and Cy_, if other than
Zero.

4. The effect of nonlinear variations in the cross-coupling derivatives

is dependent upon flight condition, nature of derivatives, and type of
maneuver.

5. General conclusions resulting from the sensitivity study are not configuration
dependent for the two aircraft considered but are stability dependent. The less

the stability margin of an aircraft the more sensitive i{s motions are to
derivative variations.
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Figure 22. C,, variation, attack 3-g turning flight with nominal
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Figure 24. C,,, variation, fighter/bomber 3-g turning flight with nominal
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Figure 25. C,, variation, fighter/bomber 3-g turning flight with nominal
cross-coupling derivatives, § derivatives zero, rudder doublet.
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Figure 26, C, variation, attack 3-g turning flight with nominal
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Figure 27. C, varlatlon, fighter/bomber level flight with nominal
cross—couplmg and § derivatives, rudder doublet.
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Figure 29. C,, o variation, fighter/bomber 3-g turning flight with nominal
crass-coupling derivatives, § derivatives zero, rudder doublet.
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Figure 30. Cp,, variation, attack 3-g turning flight with nominal
cross-coupling derivatives, 3 derivatives zero, rudder doublet.
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Figure 30. Concluded.
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Figure 31. Cg; variation, fighter/bomber level flight with nominal
cross-coupling and § derivatives, rudder doublet.
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Figure 31. Continued.

106



AEDC-TR-78-11
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Figure 31. Concluded.
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Figure 32. Cp; variation, fighter/bomber 3-g turning flight with
nominal cross-coupling and § derivatives, rudder doublet.
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Figure 32. Continued.
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Figure 32. Concluded.
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FIGHTER/BOMBER
() BASELINE - NOMINAL CC AND S8 DERIVATIVES
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Figure 33. C,; variation, fighter/bomber level flight with nominal
cross-coupling and J derivatives, rudder doublet.
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Figure 33, Continued.
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Figure 33. Concluded.
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Figure 34, C,; variation, fighter/bomber 2-g turning flight with
nominal cross-coupling and 3 derivatives, rudder doubiet.
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Figure 34. Continued.
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Figure 34, Ceoncluded.

116



AEDC-TR-79-11

FIGHTER /BOMBER
o BASELINE -NO CC
A C,eq. Cngq: Cm, NONLINEAR

30 T

F o Rrmato-onp-tmoo-e- ;
| |
15 g—eaa

o, deg

p, deglsec
i
;

5
3
;

19
0
-20
20
(8]
2
R £ —Oor=H——o0-o0od
| -
-20
Q y 8 12 16 20

Time, sec

8. Fighter/bomber
Figure 35. Cﬂq, C,.q, Cm , nonlinear variations, elevator step.
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Figure 35. Continued.
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Figure 35. Continued.
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Figure 35. Continued.
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Figure 36. Cﬂq, Cn,. Cm, nonlinear variations, bank-to-bank.
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Figure 36. Continued.
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Figure 36. Continued.
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Table 1. Aircraft Physical and Mass Characteristics

Attack-Type Aircraft Fighter/Bomber—Type Aircraft

tass 719.51ugs 1215 slugs

Ix 15,927 slugs-ft2 29,950 slugs—ft2
I, 64,792 slugs-ft’ 164,300 slugs-£c>
I, 75,076 slugs-fr’ 169,535 slugs—£c’
I, 3885 slugs-Ft~ 5241 stug-fro

5 375 fr’ 538.3 fr°

b 38,73 ft 18.4 fr

c 10.84 ft 16.04

cg J0-percent MAC 331.0-percent MAC

Table 2. Initial Trimmed Flight Conditions

Altitude = 30,000 ft

Ty b, 5} 2 Ve i, q, T, Thrust,
deg deg 1b/ft ft/see depl/see deg/sec deg/sec 1b
Fighter/Bomber
Level (1 g) 20 0 74 393 0 0 0 14,900
Turning (3 g) 20 -h8.7 206 675 -7.9 7.3 -2.9 38,800
Turning (3 g} 15 -69.0 232 715 -7.4 6.9 -2,7 26,700
Attack
Turning (3 g) 20 -71.% 157 588 -2.9 8.4 -2.4 20,300
Turning (3 g) 15 =71.1 204 672 ~7.8 7.3 ~2.5 12,600

NOTE: The thrusc-to—weight racio for the rurning flight conditions ac
a = 20 deg is 0.99 f{cr the fighter/bomber and 0.883 for the attack
aircraft, which 1s slightly beyond the capabilicy of these
aircraft configurations.
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Table 3. Range of Derivative Variations

Magnitudes Cross-Coupling Derivatives Acceleration Derivatives
per
c c C C C . C,.
Radian £ n m m ng ts
Maximum +2 +2 +1 +1 +1 +0.2
Hinimum -2 -2 -1 -1 -1 -1

Table 4. Cross-Coupling and Acceleration
Derivative Nominal Values

Cz = 2.0 per radian
q

Cn = 2.0 per radian
q

c = 1.0 per radian

c = 0.0 per radian

P
€. = 1.0 per radian
n
g
Cﬂ' = =1.0 per radian
B
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APPENDIX A
EQUATIONS DEFINING THE TOTAL AERODYNAMIC
DATA ALONG AND ABOUT EACH BODY AXIS

A-l FIGHTER/BOMBER

Longitudinal Axis Plane

Fy = g8 [Cx(a, B. 5, + (qu(a))izg_]
Fy, =38 [Cz (@, B, 8) + (a) qz—]

My = TSC I:Cm(a, B,y + (cm (a)) 12‘\37
q

C (_P_"_) C (_ﬁ)
* m A/ T A\
Lateral-Directional Axis Plane

Fy - TS [cy(a.fﬂ + AC_ (a, B, 8)

+ (C}p (u')) -PT + (C}rr {a, BH)) ;—:]

4]

M, = T5b icn(a.ﬁ) + AC (@, B, 8) + AC_ la, B, 8)

c 2 e a8y B L g€ |
+[np(a) v [nra H] T +C“ﬁﬁ+cnq 2\-';

My = §Sb %c @, By + &C) (@, B, 8,) ~ ACy (a, B, 8)

R

+ [Cﬂp (a]] I;: [C (a, SH)] — + G, %_"_ + ng %VE'
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The data matrix was formulated as a function of the following variables and their
associated ranges:

a —10to 110 deg
8 —40to 40 deg
oy —21to 7 deg
8, —30to 30 deg

& —301to 30 deg
A-Il ATTACK AIRCRAFT
Fy =795 [Cx (@, 8y) + AC, (a 35)]

Fy = 48 [C‘_(u, B,y + AC (s, 8) + AC (a,5)
+ AC(a,B) + C, (a)( ) C, (a)( )]

F, =3C | C,(a,8y) + AC (& 5,) ~ AC, (g, 8)
C aC
C, (a) (':T) + C, (E)( )]
g
My = g5b [Cf (0,8, 8yy) + ACpla, 8,) + ACpla, 8) + ACyla, 3)

. (ﬂ)(”) P G (a)(w Cy ( ) Crz\s )]

My = §SC |:Crn {a, 8y)+ AC (e, 8)) + AC (o 8)

C aC pb rb
. Cp la SH)(:—V)+ Ca, (o SH)(@,—-) R cmp(ﬁ)T cm(i)]

g Sb [cn (@, B, 8y) + AC (a,8,) + AC (@ 8) + AC,(a, 8)

+ Cnp(a(%%)+ Cnt(ﬂ) L;T) + C, (E\r) C“ﬁ(ﬁb)]

M.,

A
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The data matric was formulated as a function of the following variables and their
associated ranges:

o 0 to 90 deg

g8 —90 to 90 deg
O —5to —25 deg
Oy —25 to 25 deg
S — 10 to 10 deg

d; 0 to 60 deg
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APPENDIX B
SIMPLIFIED LINEARIZED EQUATIONS OF MOTION

Consider the rotational equations of motion p, g, and ¢ [(Egs. (4), (5), and (6)] in their
linearized form with the assumption that the lyxz terms are zero and that 1y = 1z, which is
approximate for modern fighter aircraft with small wings and high density fuselages. Then

My = ply
My = dly + b (Ix ~12)
Mg = i, + pqo(].( - lx)

If only the dynamic dimensional derivatives are considered as external forces, the equations
with e and # derivatives at zero become

p—LpP —].qu—er = 0
t.]-qu —Mrr- (MP_ Alp = 0

r—N,r—l\qq—-(l\‘p -Bp =0
where
A

eolly = [)/1y
B - qo(ly - lx)!’llz

Now, by assuming an exponential solution (p = fest, q = Ge¥, r = " e%) for the linear
differential equations, a set of homogeneous algebraic equations may be obtained that have
the following characteristic equation:

s - LP] s - \-Iq) (SN} -8 —LP] I\iq'\-lr - -N) (MP - A) Lq

-5 - M) (N, - BL, - (N, -~ B) Mqu - (\"P - A) Nqu =0

Although this equation is a simplified example of a six-degree-of-freedom nonlinear system,
it does point out the degree of interaction that occurs between the stability derivatives. As an
example to show the necessity for including nonzero nominal values, consider the effect that
zero values of the cross-coupling derivatives C;q (Ly) and C.,q (Ng) would have on the
Cr,(M,) variation. For this linearized case, it becomes obvious from the above equation that
the effect of the Cy,_ derivative on the aircraft motion would be eliminated.
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NOMENCLATURE

All aerodynamic data are presented with respect to the body axis shown in Fig. 1.

b
C
CC

Ce

Wing span, ft

Wing mean aerodynamic chord, ft

Cross-coupling derivatives

Rolling-moment coefficient, rolling moment/q Sb about airplane cg

Derivative of rolling-moment coefficient with respect to roll rate,
dCy/3(pb/2V), per radian

Derivative of rolling-moment coefficient with respect to pitch rate,
aC/8(qC/2V), per radian

Derivative of rolling-moment coefficient with respect to yaw rate,
dC/a(rb/2V), per radian

Derivative of rolling-moment coefficient with respect to o , 3C/3(aC/2V),
per radian

Derivative of rolling-moment coefficient with respect to g, IC/HBb/2V),
per radian

Pitching-moment coefficient, pitching moment/q SC about airplane cg

Derivative of pitching-moment coefficient with respect to roll rate,
3C,/3(pb/2V), per radian

Derivative of pitching-moment coefficient with respect 1o pilch rate,
dC,,/3(qC/2V), per radian

Derivative of pitching-moment coefficient with respect to yaw rate,
d9C,,/a(rb/2V), per radian

Derivative of pitching-moment coefficient with respect to a, 3Cn/HaC/2V),
per radian
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Derivalive of pitching-moment coefficient with respect to 8, 9C,,/3(5b/2V),
per radian

Yawing-moment coefficient, yawing moment/q Sb about airplane ¢g

Derivative of yawing-moment coefficient with respect to roll rate,
9C,/d(pb/2V), per radian '

Derivative of yawing-moment coefficient with respect to pitch rate,
dC,/9(qC/2V), per radian

Derivative of yawing-moment coefficient with respect to yaw rate,
3C,/3(rb/2V), per radian

Derivative of yawing-moment coefficient with respect to & , 3C,/3(cfC/2V),
per radian

Derivative of yawing-moment coefficient with respect to 3, 8C,/8(8b/2V),
per radian

Longitudinal-force coefficient, longitudinal force/q S

Derivative of longitudinal-force coefficient with respect to pitch rate,
aC,/3(qC/2V), per radian

Side-force coefficient, side force/q S

Derivative of side-force coefficient with respect to roll rate, 8C,/Hpb/2V),
per radian

Derivative of side-force coefficient with respect to yaw rate, 9C,/3(rb/2V),
per radian

Normal-force coefficient, normal force/q S

Derivative of normal-force coefficient with respect to pitch rate,
aC,/qC/2V), per radian

Derivative of normal-force coefficient with respect to @, BCZ/J(&CHV), per
radian
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cg Center-of-gravity location, percent chord

Fx Force acting along X-body axis, 1b

Fy Force acting along Y-body axis, lb

F; Force acting along Z-body axis, Ib

g Acceleration of gravity, ft/sec?

h Altitude, ft

Ig Moment of inertia about X-body axis attributable to engine rotation, slugs-
fi2

I, iv.Iz Moments of inertia about X-, Y-, and Z-body axes, respectively, slugs-ftZ

Ixz Product of inertia, slugs-ft2

L Aerodynamic rolling moment

L, Dimensional stability derivative, (1/1x)(dL/8p)

L, Dimensional stability derivative, (1/1x}dL/3q)

L Dimensional stability derivative, (1/1x)(dL/r)

LWD Left wing down

M Aerodynamic pitching moment

MAC Mean aerodynamic chord

M, Dimensional stability derivative, (1/1y)}{@M/dp)

M, Dimensional stability derivative, (1/Iy{aM/dq)

M’. Dimensional stability derivative, (1/[y){(0M/or)

Mx Moment acting about X-body axis, ft-1b
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pP.g,r

£

RWD

TED

TEL

TER

TEU

XY, Z

Moment acting about Y-body axis, ft-lb

Moment acting about Y-body axis caused by engine thrust, ft-lb
Moment acting about Z-body axis, ft-lb

Mass, slugs

Acerodynamic yawing moment

Aircraft load factor

Components of ﬁabout X-, Y-, and Z-body axes, respectively, rad/sec
Dynamic pressure, gV2/2, Ib/ft2

Right wing down

Wing reference area, ft?

Trailing edge down

Trailing edge left

Trailing edge right

Trailing edge up

Component of engine thrust along X-axis, b

Component of engine thrust along Z-body axis, Ib

Components of total velocity along X-, Y-, and Z-body axes, respectively,
ft/sec

Total velocity, fl/sec

Body axes
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XY,z Linear distance along X-, Y-, and Z-body axes, respectively, ft

o Angle of attack, deg

B Angle of sideslip, deg

¥ Flight path angle, deg

A Increment for force and moment coefficients

8, Aileron deflection, positive when trailing edge of right aileron is down, deg
. Elevator deflection, positive when trailing edge is down, deg

&, Rudder deflection, positive when trailing edge is left, deg

&5 Spoiler deflection, function of aileron deflection, deg

6 Angle between X-body axis and horizontal measured in vertical plane, deg
o Air density, slugs/ft3

@ Angle between Y-body axis and horizontal measured in vertical plane, deg
Y Angle between Y-body axis and vertical measured in horizontal plane, deg
0 Resultant angular vector, rad/sec

Qc Engine rotor angular velocity, rad/sec

Qb/2V Nondimensional rotation rate

SUPERSCRIPT

. Derivative with respect to time

SUBSCRIPT

o Initial condition, time = 0
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